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Abstract: Glabridin is a polyphenolic compound with reported anti-inflammatory and anti-oxidative
effects. In the previous study, we synthesized glabridin derivatives—HSG4112, (S)-HSG4112, and
HGR4113—based on the structure–activity relationship study of glabridin to improve its biological
efficacy and chemical stability. In the present study, we investigated the anti-inflammatory effects
of the glabridin derivatives in lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages. We
found that the synthetic glabridin derivatives significantly and dose-dependently suppressed the
production of nitric oxide (NO) and prostaglandin E2 (PGE2), and decreased the level of inducible
nitric oxygen synthase (iNOS) and cyclooxygenase-2 (COX-2) and the expression of pro-inflammatory
cytokines interleukin-1β (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α). The synthetic
glabridin derivatives inhibited the nuclear translocation of the NF-κB by inhibiting phosphorylation
of the inhibitor of κB alpha (IκB-α), and distinctively inhibited the phosphorylation of ERK, JNK,
and p38 MAPKs. In addition, the compounds increased the expression of antioxidant protein heme
oxygenase (HO-1) by inducing nuclear translocation of nuclear factor erythroid 2-related factor
2 (Nrf2) through ERK and p38 MAPKs. Taken together, these results indicate that the synthetic
glabridin derivatives exert strong anti-inflammatory effects in LPS-stimulated macrophages through
MAPKs and NF-κB pathways, and support their development as potential therapeutics against
inflammatory diseases.

Keywords: glabridin derivatives; HSG4112 (vutiglabridin); HGR4113; LPS-stimulated macrophage;
anti-inflammation; NF-κB

1. Introduction

Inflammation is a critical process to protect the host from bacteria, viruses, and toxins,
and plays a key role in removing the cause of such inflammation and restoring the damaged
tissue. In general, when the cause is removed, the inflammation disappears [1]. However,
if inflammation is maintained within the body for a long time due to environmental or
physiological factors, the body continues to be in a state of chronic inflammation [1,2].
Chronic inflammation disrupts tissue homeostasis by inducing organelle dysfunction
and cellular apoptosis within various tissues by the constant release of cytokines and/or
chemokines [3,4]. Continuous exposure to these cytokines and/or chemokines is implicated
in the pathogenesis of various inflammatory and inflammation-related diseases, such as
autoimmune diseases including psoriasis, rheumatoid arthritis, and inflammatory bowel
disease, metabolic diseases including non-alcoholic steatohepatitis (NASH) and type 2
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diabetes, and even neurodegenerative disease [5,6]. Murine macrophage-like cell lines,
such as RAW264.7 cells, are commonly used and are appropriate models for evaluating
inflammatory responses under stimulation with lipopolysaccharide (LPS), which is the
predominant outer component of gram-negative bacteria. The inflammatory responses are
characterized by increased production of nitric oxide (NO), prostaglandin E2 (PGE2), tumor
necrosis factor-α (TNF-α), and interleukin (IL)s [7,8]. Evaluating anti-inflammatory effects
of potential therapeutics in such a system has been shown to be useful in the search for
effective compounds against diverse inflammatory and inflammation-related diseases [9].

Glabridin is an isoflavan isolated from the roots extract of licorice (Glycyrrhiza glabra) [10].
Glabridin has been extensively studied as a natural compound with known anti-oxidative
and anti-inflammatory activities, as well as with effects on the improvement of metabolic
dysregulation [11]. However, glabridin has low stability and bioavailability, rendering
it difficult to develop as a clinical therapeutic agent [12]. Previously, we performed a
structure–activity relationship (SAR) study of glabridin and synthesized various glabridin
derivatives with improved chemical stability and in vivo efficacy [13,14]. Among them,
HSG4112 is currently at clinical phase 2 stage (NCT05197556) and HGR4113 is at clinical
phase 1 stage (NCT05642377), and the (S)-enantiomer of HSG4112 (S)-HSG4112) is at a
preclinical stage of development. Therefore, detailed characterization and understanding
of the mechanism of the anti-inflammatory effects of these synthetic glabridin derivatives
are needed.

Mitogen-activated protein kinase (MAPK) and nuclear factor kappa-light-chain-
enhancer of activated B cells (NF-κB) signaling pathways both play pivotal roles in the
mediation of the LPS-stimulated inflammatory response [15,16]. Three major MAPKs,
which are extracellular signal-regulated kinase (ERK), c-Jun N-terminal kinase (JNK), and
phosphorylated 38 (p38), are activated by phosphorylation and regulate inflammatory
cytokine secretion in an LPS-stimulated RAW264.7 model [17–21]. All three MAPKs have
been well studied to regulate inflammatory responses, reducing NO, IL-6, and TNF-α
levels in LPS-induced models, respectively [22,23]. NF-κB is a transcription factor that
is activated by the phosphorylation of nuclear factor kappa light polypeptide gene en-
hancer in B-cells inhibitor, alpha (IκB-α), and is localized to the nucleus and expresses
various inflammatory response genes, including proinflammatory cytokines such as IL-1β,
IL-6, and TNF-α, and proinflammatory factors such as inducible nitric oxygen synthase
(iNOS) and cyclooxygenase-2 (COX-2) [15,24]. Suppressing the activation of MAPKs and
NF-κB is thus an important step in mediating the anti-inflammatory effects of potential
therapeutic compounds.

In contrast to pro-inflammatory responses, nuclear transcription factor E2-related
factor 2 (Nrf2) is a major transcription factor that regulates anti-inflammatory and anti-
oxidative response [25]. Nrf2 is localized to the nucleus under an oxidative stress condition
and binds to the antioxidant response element (ARE) to induce gene expression of phase II
conjugation enzymes including heme oxygenase-1 (HO-1), a major antioxidant enzyme
that regulates heme catabolism and cleaves heme to form biliverdin, carbon monoxide, and
ferrous iron [25–27]. HO-1 and its product carbon monoxide can suppress the production
of pro-inflammatory cytokines such as TNF-α, IL-1β and IL-6 [28,29]. The up-stream
regulators of Nrf2 pathway include MAPKs (ERK, JNK, and p38) [30]. This pathway has
been extensively researched for the search of therapeutic compounds as well.

In this study, we investigated the anti-inflammatory and anti-oxidative effects of the
synthetic glabridin derivatives in LPS-induced RAW264.7 cells and examined their mecha-
nisms on the major pro-inflammatory MAPK and NF-κB pathways and anti-inflammatory
Nrf2 pathway.

2. Results
2.1. Effects of Compounds on LPS-Induced NO and PGE2 Production

We investigated whether glabridin and the synthetic glabridin derivatives—HSG4112,
(S)-HSG4112, and HGR4113 (Figure 1)—exert overall anti-inflammatory effects in the LPS-
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stimulated RAW264.7 macrophage. RAW264.7 cells were pre-treated with glabridin and
the synthetic glabridin derivatives at the indicated concentrations for 3 h before stimulation
with LPS for 24 h, and the supernatant was collected. The indicated concentrations were
used as the maximum concentration that did not visibly affect cell viability. Butein, a
chalcone polyphenol first isolated from Rhus verniciflua Stokes, was used as a positive control,
since it has various biological properties including anti-oxidative and anti-inflammatory
effects, and has previously demonstrated such efficacy in RAW264.7 cell [31–33].
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Figure 1. Structures of glabridin and the synthetic glabridin derivatives: HSG4112, (S)-HSG4112,
HGR4113. Chemical structures of glabridin and the synthetic glabridin derivatives: Glabridin,
HSG4112, (S)-HSG4112, HGR4113.

The level of NO and PGE2 was determined by the Griess reaction and ELISA, respec-
tively. While LPS-stimulation significantly increased NO and PGE2 production, as shown in
the control group; all compounds dose-dependently and significantly reduced such NO and
PGE2 production (Figure 2A,B). All synthetic glabridin derivatives had superior inhibitory
effects to glabridin and comparable inhibitory effects to butein at 20 µM concentration.
As shown in Table 1, for the suppression of NO production, the IC50 values for glabridin,
HSG4112, (S)-HSG4112, and HGR4113 were 9.36, 6.79, 3.85, and 11.32 µM, respectively. For
the suppression of PGE2 production, the IC50 values for glabridin, HSG4112, (S)-HSG4112,
and HGR4113 were 7.09, 3.55, 2.37, and 1.64 µM, respectively.

Table 1. Summary of the effects of the compounds in LPS-stimulated RAW264.7 cells.

Compound NO
(IC50, µM)

PGE2
(IC50, µM)

Cytokine
mRNA

Expression
Inhibition

NF-κB
Pathway

Inhibition

MAPK
Pathway

Inhibition

HO-1
Induction
by MAPK

Glabridin 9.36 7.09

IL-1β, IL-6,
TNF-α

p-IκB-α

JNK, p38

p38, ERK
HSG4112 6.79 3.55 ERK

(S)-HSG4112 3.85 2.37 JNK, p38

HGR4113 11.32 1.64 JNK
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were not treated with any compounds nor LPS (white column). (A) NO concentration was deter-
mined using Griess reaction. (B) PGE2 was measured by ELISA. Values shown are means ± SD of 
three independent experiments. # p < 0.05 in LPS-treated CTL vs. CTL, and * p < 0.05 vs. LPS-treated 
CTL group. (C–F) The protein levels of iNOS and COX-2 were determined by Western blot. The 
experiment was repeated three times. The protein expressions in the Western blot were quantita-
tively presented at the bottom of each band as relative values to the actin expression. 

  

Figure 2. Effect of compounds on LPS-induced NO, PGE2, iNOS, and COX-2 in RAW264.7 cells.
RAW264.7 cells were pre-treated with or without the indicated concentrations of compounds for 3 h
and then stimulated with LPS (1 µg/mL) for 24 h. Butein (10 µM) was used as positive control with
known inhibitory effect against LPS-stimulation (hatched pattern column). Control (CTL) groups
were not treated with any compounds nor LPS (white column). (A) NO concentration was determined
using Griess reaction. (B) PGE2 was measured by ELISA. Values shown are means ± SD of three
independent experiments. # p < 0.05 in LPS-treated CTL vs. CTL, and * p < 0.05 vs. LPS-treated
CTL group. (C–F) The protein levels of iNOS and COX-2 were determined by Western blot. The
experiment was repeated three times. The protein expressions in the Western blot were quantitatively
presented at the bottom of each band as relative values to the actin expression.
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Next, the protein expressions of iNOS and COX-2, which produce NO and PGE2,
respectively, were investigated. Cell lysate was harvested under the same experimental
conditions as above, and the protein expression levels of iNOS and COX-2 were measured
by Western blot. The expression levels of both iNOS and COX-2 were markedly increased
by LPS-stimulation and were decreased in a dose-dependent manner by glabridin and the
synthetic glabridin derivatives (Figure 2C–F).

2.2. Effects of Compounds on LPS-Induced Cytokines

The effects of glabridin and the synthetic glabridin derivates on the LPS-induced pro-
inflammatory cytokines, including IL-1β, IL-6 and TNF-α, were examined. RAW264.7
cells were pre-treated with or without the indicated concentrations of compounds and
then were stimulated with LPS. The mRNA expression of all three pro-inflammatory
cytokines was markedly increased by LPS stimulation and was significantly decreased in
a dose-dependent manner by glabridin and the synthetic glabridin derivatives: HSG4112,
(S)-HSG4112, and HGR4113 (Figure 3A–C). All synthetic glabridin derivatives had
superior inhibitory effects to glabridin and comparable inhibitory effects to butein at
20 µM concentration.

2.3. Effects of Compounds on NF-κB Signaling Pathway

To investigate the potential mechanism of the anti-inflammatory effects of the com-
pounds, we examined the effects of glabridin and the synthetic glabridin derivates on NF-κB
activation and DNA binding. NF-κB consists of two subunits (p50, p65) which are localized
to the nucleus when activated. We performed Western blot to examine the translocation of
NF-κB subunits into the nucleus. While both subunits p50 and p65 were localized into the
nucleus by LPS-stimulation, glabridin and the synthetic glabridin derivatives —HSG4112,
(S)-HSG4112, HGR4113—dose-dependently inhibited the nuclear translocation of NF-κB.
Next, to identify which upstream pathway is affected in the NF-κB signaling, the activity
of IκB-α was examined. Upon phosphorylation of IκB, IκB is degraded and separated from
NF-κB, allowing NF-κB to translocate into the nucleus [24]. While IκB-α phosphorylation
markedly increased with LPS-stimulation, glabridin and the synthetic glabridin derivatives
decreased IκB-α phosphorylation in a dose-dependent manner (Figure 4A–D). In addition,
nuclear DNA binding assay was performed to confirm the downstream effect of NF-κB.
After NF-κB is translocated into the nucleus, it binds to DNA as a transcription factor.
While nuclear NF-κB DNA binding markedly increased LPS-stimulation, glabridin and
the synthetic glabridin derivatives significantly and dose-dependently decreased such
binding (Figure 4E). These results indicate that glabridin and the synthetic glabridin deriva-
tives inhibit the LPS-induced activation of NF-κB signaling by inhibiting phosphorylation
of IκB-α.

2.4. Effects of Compounds on LPS-Induced MAPK Signaling

To further investigate the mechanism of the anti-inflammatory effects of the com-
pounds, we examined the effects of glabridin and the synthetic glabridin derivates on
MAPK signaling. We examined the activation of the three major MAPK (ERK, JNK, and
p38) in RAW264.7 cells by quantifying phosphorylation through Western blot [34]. For
the negative control, PD98059, SP600125, and SB203580 were used as inhibitors of ERK,
JNK, and p38 MAPK, respectively. LPS stimulation markedly induced the phosphoryla-
tion of ERK, JNK, and p38 (Figure 5A–D). Under LPS-stimulation, the tested compounds
showed a distinct effect on each of the MAPKS: glabridin suppressed phosphorylation
of JNK and p38 (Figure 5A), HSG4112 suppressed phosphorylation of ERK (Figure 5B),
(S)-HSG4112 suppressed phosphorylation of JNK and p38 (Figure 5C), and HGR4113
suppressed phosphorylation of JNK (Figure 5D). The total unphosphorylated forms of all
MAPKs were unaffected by LPS and test compounds (Figure 5A–D). These results show
that while glabridin and the synthetic glabridin derivatives inhibit at least one MAPK
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signaling under LPS-stimulation, the specific MAPK (ERK, JNK, and p38) involved is
distinct for each compound.
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Figure 3. Effects of compounds on LPS-induced IL-1β, IL-6, TNF-α expression in RAW264.7 cells.
RAW264.7 cells were pre-treated with or without the indicated concentrations of compounds for
3 h and then stimulated with LPS (1 µg/mL) for 6 h. Butein (10 µM) was used as positive control
with known inhibitory effect against LPS-stimulation (hatched pattern column). CTL groups were
not treated with any compounds nor LPS (white column). The mRNA levels of (A) IL-1β, (B) IL-6,
and (C) TNF-α were determined by qPCR. Values shown are means ± SD of three independent
experiments. # p < 0.05 in LPS-treated CTL vs. CTL, and * p < 0.05 vs. LPS-treated CTL group.
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concentrations of compounds for 3 h and then stimulated with LPS (1 µg/mL) for 1 h. Butein
(10 µM) was used as positive control with known inhibitory effect against LPS-stimulation (hatched
column). CTL groups were not treated with any compounds nor LPS (white column). (A–D) Cytosolic
extracts (CE) were isolated and the levels of p-IκB-α and IκB-α in each fraction were determined by
Western blot. Nuclear extracts (NE) were isolated and the levels of p65 and p50 in each fraction were
determined by Western blot. (E) NF-κB ELISA kit (Active Motif) was used on the nuclear extracts to
determine the degree of NF-κB DNA binding. PCNA was used as nuclear lysate control and actin was
used as cytosolic lysate control. The experiment was repeated three times. The protein expressions
in the Western blot were quantitatively presented at the bottom of each band as relative values to
the PCNA and actin expression, respectively. Values shown are means ± SD of three independent
experiments # p < 0.05 in LPS-treated CTL vs. CTL, and * p < 0.05 vs. LPS-treated CTL group.
NE = nuclear extracts, CE = cytosolic extracts.
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Figure 5. Effects of compounds on LPS-induced phosphorylation of ERK, JNK, and p38 MAPK
in RAW264.7 cells. Lysates were prepared from RAW264.7 cells pre-treated with or without the
indicated concentrations of compounds for 3 h and then stimulated with LPS (1 µg/mL) for 30 min.
(A–D) The protein levels of the phosphorylated form and non-phosphorylated form were determined
by Western blot. CTL groups were not treated with any compounds. PD98059, SP600125, SB203580
were used as positive controls to inhibit the phosphorylation of ERK, JNK, and p38, respectively. The
experiment was repeated three times. The protein expressions in the Western blot were quantitatively
presented at the bottom of each band as relative values to the actin expression.

2.5. Effects of Compounds on HO-1 Induction and Nrf2 Signaling

Intracellular inflammation can be caused by exogenous pathogens such as LPS but can
also be caused by intracellular oxidative stress [35]. Nrf2 is a well-known anti-oxidative
transcription factor that localizes into the nucleus to suppress cellular inflammatory condi-
tions in an oxidative stress environment and induces transcription of antioxidant proteins
such as HO-1 [36]. To investigate the potential anti-oxidative effects of the compounds, we
examined whether glabridin and the synthetic glabridin derivatives induce HO-1 protein
expression in RAW264.7 cells by Western blot. RAW264.7 cells were pretreated with or
without the indicated concentrations of compounds or copper (CoPP) for 12 h. CoPP was
used as a positive control to create an extreme oxidative stress environment and thus in-
duce HO-1. We found that glabridin and the synthetic glabridin derivatives increase HO-1
protein expression in a dose-dependent manner in RAW264.7 cells (Figure 6A–D). Next,
we investigated the mechanism of HO-1 induction by examining the effects of compounds
on nuclear translocation of Nrf2 in RAW264.7 cells by Western blot. RAW264.7 cells were
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treated for 0.5, 1, and 1.5 h with each compound’s respective highest non-toxic concen-
trations. Butein was used as a positive control to induce nuclear translocation of Nrf2,
which was previously reported in murine microglial cells [31]. Glabridin and the synthetic
glabridin derivatives all increased nuclear Nrf2 expression and concomitantly decreased cy-
tosolic Nrf2 expression (Figure 6E–H). These results demonstrate the anti-oxidative effects
of glabridin and the synthetic glabridin derivatives through the Nrf2 signaling pathway.
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were quantitatively presented at the bottom of each band as relative values to the actin expression.
(E–H) RAW264.7 cells were treated with the highest non-toxic concentrations of compounds for 0,
0.5, 1, and 1.5 h. Nuclear and cytosolic extracts were isolated and the levels of Nrf2 in each fraction
were determined by Western blot. Butein (10 µM) was used as positive control. PCNA was used as
nuclear lysate control and actin was used as cytosolic lysate control. The experiment was repeated
three times. The protein expressions in the Western blot were quantitatively presented at the bottom
of each band as relative values to the PCNA and actin expression, respectively. NE = nuclear extracts,
CE = cytosolic extracts.
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2.6. Effects of Compounds on MAPK Signaling Involved in HO-1 Induction

To further investigate the mechanism of the anti-oxidative effects of the compounds,
we examined the MAPKs upstream of Nrf2/HO-1 pathways, which are ERK, JNK, and
p38 [30]. MAPK inhibitor assays were conducted by Western blot to determine which
MAPK is involved in the expression of HO-1 in RAW264.7. Cells were pre-treated with
respective MAPK inhibitor for 3 h, and then treated with each compound’s respective
highest non-toxic concentration for 12 h. We found that for all compounds, p38 inhibitor
(SB203580) and ERK inhibitor (PD98059) reduced the induction of HO-1, while the JNK
inhibitor (SP600125) had no effect (Figure 7A–D). These results show that glabridin and
the synthetic glabridin derivatives all induce the expression of HO-1 through p38 and
ERK MAPKs.
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Figure 7. Effects of compounds on MAPKs involved in HO-1 expression in RAW264.7 cells. RAW264.7
cells were pre-treated with or without MAPK inhibitors for p38 (SB203580), JNK (SP600125), or ERK
(PD98059) for 3 h, and then treated with the highest non-toxic concentration of each compound for 12 h.
(A–D) The protein level of HO-1 was determined by Western blot. CTL groups were not treated with
any compounds. The protein expressions in the Western blot were quantitatively presented at the
bottom of each band as relative values to the actin expression.

3. Discussion

This study investigated the anti-inflammatory effects and mechanisms of the synthetic
glabridin derivatives—HSG4112, (S)-HSG4112, and HGR4113—in comparison to glabridin
in LPS-stimulated RAW264.7 murine macrophages. We found that glabridin and the syn-
thetic glabridin derivates clearly and markedly suppress LPS-activated pro-inflammatory
markers and cytokines, and inhibit LPS-induced activation of NF-κB and MAPK signal-
ing pathways. In addition, all compounds induced the anti-inflammatory Nrf2 signaling
pathway, increasing antioxidant HO-1 protein expression through distinct MAPKs.

Glabridin has an isoflavan structure and has various reported pharmacological ac-
tivities, including anti-oxidative, anti-inflammatory, anti-atherogenic, energy-regulating,
and neuroprotective effects [37]. In the previous study, we considered obesity as a chronic
inflammatory condition and created biochemically stable synthetic glabridin derivatives
(HSG4112, (S)-HSG4112, HGR4113) from the structure of glabridin and evaluated their
efficacies through an in vivo SAR study [14]. Even though the backbone structure is similar,
it is worthwhile to note that glabridin is an (R) enantiomer, while HSG4112 is a racemate
and (S)-HSG4112 is an (S) enantiomer; for most cases of small molecular compounds,
only one enantiomer is pharmacologically active [38]. In addition, HGR4113 has notable
differences to glabridin, which are hydroxy-to-propoxy modification at the resorcinol ring
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at C-4 and the double bond hydrogenation at the pyranobenzene structure. Therefore, the
anti-inflammatory effects and mechanisms of the synthetic glabridin derivatives could not
be surmised and needed to be investigated.

The inflammatory response involves a number of key mediators—including NO, PGE2,
IL-1β, IL-6, and TNF-α—which can also be used as clinical markers of diagnosis. While LPS
induction dramatically increased the level of these markers as expected, the treatment of
synthetic glabridin derivatives significantly reduced them in a degree greater than glabridin
and comparable to Butein. This is indicative of how the reported functions of glabridin on
these pro-inflammatory markers can be enhanced through chemical modifications [11,39].

LPS induction leads to the activation of pro-inflammatory pathways. In this study, we
investigated two major signaling pathways—NF-κB and MAPK—to examine whether the
tested compounds exhibit anti-inflammatory effects through them. NF-κB is a well-known
protein that plays a pivotal role in the inflammatory response, and lies at the center of the
pro-inflammatory cytokine response and NLR family pyrin domain containing 3 (NLRP3)
inflammasome formation [18,40]. We found that the synthetic glabridin derivatives inhibit
nuclear translocation of NF-κB by suppressing phosphorylation of IκB-α. However, it
remains unknown whether the compounds directly engage IκB-α or any upstream signal-
ing protein. Moreover, in MAPK phosphorylation, glabridin and (S)-HSG4112 inhibited
JNK and p38, while HSG4112 inhibited ERK and HGR4113 inhibited JNK. This finding
suggests that each compound has a notably distinctive mechanism of inhibiting the in-
flammatory response. There are reports of distinctive inhibitions of each of the MAPKs
for the anti-inflammatory responses, while such inhibitions ultimately converge to the
downstream effect of reducing the production of pro-inflammatory cytokines [41]. Whether
each compound’s distinctive inhibition of MAPKs leads to differences in the inhibitory
efficacy or mechanism of the inflammatory response is unknown, and the directly binding
mechanistic target protein of each compound is also unknown [42–44]. The directly binding
mechanistic target protein of each compound is yet unknown. Nevertheless, the syn-
thetic glabridin derivatives showed overall superior anti-inflammatory effects compared to
glabridin, which suggest that their efficacies would likely increase as therapeutic agents
as well. There are pro-inflammatory mediates other than NF-κB. Cyclic AMP-responsive
element-binding protein (CREB) and activator protein 1 (AP1) are also transcription fac-
tors that induce pro-inflammatory cytokines. These factors are activated by p38 and JNK
MAPK pathway, respectively, by LPS-stimulation [45]. Signal transducer and activator of
transcription 3 (STAT3) is another transcription factor activated by LPS-stimulation, and
it can be activated by several cytokines mediating the expression of several acute-phase
response genes [46,47]. Thus, further studies can investigate the compounds’ effects on
CREB, AP-1, and STAT3-mediated induction of pro-inflammatory responses.

As opposed to pro-inflammatory signaling pathways, we evaluated the anti-
inflammatory Nrf2 pathway to determine whether the synthetic glabridin derivatives
exhibit anti-inflammatory and anti-oxidative effects. The Nrf2 pathway is a well-known
pathway that induces the transcription of various anti-oxidative proteins including HO-
1 [25,30,36,48]. Glabridin has been reported to regulate mitochondrial function and reduce
ROS generation through the Nrf2/HO-1 signaling pathway [48,49]. The synthetic glabridin
derivatives also induced nuclear translocation of Nrf2 and HO-1 expression. Of note, the
MAPKs that are upstream of Nrf2 signaling were identified for each compound and were
found to be ERK and p38 for all compounds, which suggests a common mechanism of
action in mediating this pathway. However, further study is needed to investigate whether
the synthetic glabridin derivatives induce the Nrf2/HO-1 pathway under oxidative stress
condition by measuring ROS levels in cells or mitochondria.

In conclusion, our study demonstrated that the three prominent glabridin derivatives —
HSG4112, (S)-HSG4112, and HGR4113—exhibit both anti-inflammatory and anti-oxidative
effects in macrophages through canonical pathways involving MAPK, NF-κB, and Nrf2
signaling, as shown in Figure 8. These results provide support for their development as
therapeutic agents against inflammatory and inflammation-related diseases.
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Figure 8. Molecular mechanism model for the anti-inflammatory effect of synthetic glabridin deriva-
tives in RAW264.7 cells. Synthetic glabridin derivatives have anti-inflammatory effects through NF-kB
and MAPKs signaling pathways under LPS stimulation. Compounds also induce the antioxidant
protein HO-1 through Nrf2 pathway. In the chemical structure of the synthetic glabridin derivatives,
* indicates the stereocenter for the optical isomers, R indicates the functional group, and #indicates a
double bond, only in glabridin. The number written under the MAPK (left panel) indicates which
compound among the synthetic glabridin derivatives acts distinctively through the three MAPKs.

4. Materials and Methods
4.1. Materials

Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum (FBS), and various
other tissue culture reagents were purchased from Thermo Fisher Scientific (Waltham,
MA, USA). All other chemicals were obtained from Sigma-Aldrich Co. (St. Louis, MO,
USA). Primary antibodies are anti-iNOS, sc-650; anti-COX-2, sc-1745; anti-IκB-α, sc-371;
anti-p-IκB-α, sc-8404; anti-p50, sc-7178; anti-p65, sc-8008, from Santa Cruz Biotechnology
(Dallas, TX, USA) anti-p-ERK, #9101; anti-ERK, #9102; anti-p-JNK, #9251; anti-JNK, #9252S;
anti-p-p38, #9211; anti-p38, #9212S, from Cell Signaling Technology (Danvers, MA, USA)
Secondary antibodies: anti-mouse, ap124p; anti-goat, ap106p; anti-rabbit, ap132p, Millipore.
The enzyme-linked immunosorbent assay (ELISA) kit for PGE2 was purchased from R&D
Systems (Minneapolis, MN, USA). The compounds glabridin, HSG4112, (S)-HSG4112,
HGR4113 were provided by Glaceum Inc (Suwon, Republic of Korea).

4.2. Cell Culture and Viability Assay

RAW264.7 was purchased from American Type Culture Collection (ATCC, Manas-
sas, VA, USA). RAW264.7 cells were cultured in 5 × 105 cell/mL in DMEM medium,
supplemented with 10% heat-inactivated FBS, penicillin G (100 units/mL), streptomycin
(100 mg/mL), and L-glutamine (2 mM), and incubated at 37 ◦C in a humidified atmosphere
containing 5% CO2. For all supernatant collections, the compounds were not washed out
and the medium was not changed. Cell viability was measured with 3-[4,5-dimethylthiazol-
2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays, where 0.5 mg/mL of MTT was added
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to 200 µL of each cell suspension (1 × 105 cell/mL in 96-well plates) for 4 h. The viability
of compound-treated cells was measured through visual estimation to be similar to the
control cells. Quantification was not performed.

4.3. NO Production

The nitrite concentration was used as an indicator of NO production and was measured
with the Griess reaction. Supernatant (100 µL) was mixed with the Griess reagent at a 1:1
ratio (solution A, 222488; solution B, S438081; Sigma-Aldrich Co. (St. Louis, MO, USA)),
and the absorbance at 525 nm was measured with ELISA plate reader.

4.4. PGE2 Assay

RAW264.7 cells were cultured in 24-well plates and incubated for 3 h with compounds
before LPS (Sigma-Aldrich Co.) stimulation for 24 h. Supernatant (100 µL) PGE2 concentra-
tion was measured with an ELISA kit (R & D Systems).

4.5. Western Blot Analysis

RAW264.7 cells were harvested and centrifuged (16,000 rpm, 15 min). Cells were
washed with PBS and lysed with 20 mM Tris-HCl buffer (pH 7.4) with protease inhibitor
mixture (0.1 mM PMSF, 5 mg/mL pepstatin A, 5 mg/mL aprotinin, and 1 mg/mL chy-
mostatin). Protein concentration was measured with Lowry Protein Assay Kit (P5626;
Sigma-Aldrich Co.). Samples were placed on 12% sodium dodecyl sulfate-polyacrylamide
gel electrophoresis (SDS-PAGE) and transferred to an enhanced chemiluminescence (ECL)
nitrocellulose membrane (Bio-Rad, Hercules, CA, USA). The membrane was blocked with
5% skimmed milk and then incubated with the respective primary antibodies (Santa Cruz
Biotechnology) and horseradish peroxidase-conjugated secondary antibodies, before ECL
detection (Amersham Pharmacia Biotech, Amersham, UK).

4.6. Preparation of Cytosolic and Nuclear Fractions

RAW264.7 cells were homogenized in M-PER-Mammalian Protein Extraction Reagent
(Thermo Fisher Scientific). The cytosolic fraction was acquired at 4 ◦C with centrifugation at
14,000× g for 5 min. Nuclear and cytoplasmic extracts were acquired with NE-PER Nuclear
and Cytoplasmic Extraction Reagents (Pierce Biotechnology, Rockford, IL, USA). Cell lysis
was performed at 4 ◦C by shaking for 15 min in RIPA Lysis and Extraction Buffer (Thermo
Fisher Scientific). The final supernatant was collected by centrifugation at 16,000× g
for 15 min.

4.7. DNA-Binding Activity of NF-κB

RAW264.7 cells were treated for 3 h with the compounds before LPS (1 µg/mL)
stimulation for 30 min. The DNA-binding activity of NF-κB in the acquired nuclear extracts
was measured with TransAM kit (Active Motif, Carlsbad, CA, USA).

4.8. Quantitative Real-Time Reverse Transcriptase PCR (qRT-PCR) Assay

Total RNA from RAW264.7 cells was isolated with Trizol (Invitrogen, Carlsbad, CA,
USA) and quantified at 260 nm. Total RNA (1 µg) was reverse-transcribed with High-
Capacity RNA-to-cDNA Kit (Applied Biosystems, Carlsbad, CA, USA) and cDNA was am-
plified with SYBR Premix Ex Taq Kit (TaKaRa Bio Inc., Shiga, Japan) and StepOnePlus Real-
Time PCR (Applied Biosystems). qRT-PCR (20 µL) sample contained 10 µL SYBR Green
PCR Master Mix, 0.8 µM primer, and the remaining diethyl pyrocarbonate (DEPC)-treated
water. The primer sequences were designed with Primer Quest (Integrated DNA Technolo-
gies, Cambridge, MA, USA): IL-1β, forward 5′-A ATTGGTCATAGCCCGCACT-3′, reverse
5′-AAGCAATGTGCTGGTGCTTC-3′, IL-6, forward 5′-ACTTCACAAGTCGGAGGCTT-3′,
reverse 5′- TGCAAGTGCATCATCGTTGT-3′, TNF-α, forward 5′-CCAGACCCTCACACT
CACAA-3′, reverse 5′-A CAAGGTACAACCCATCGGC-3′, GAPDH, forward 5′-ACTTT
GGTATCGTGGAAGGACT-3′, reverse 5′- GTAGAGGCAGGGATGATGTTCT-3′. Data were
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analyzed with Thermal Cycler and StepOne software (Applied Biosystems) and the com-
parative CT method was used to measure the relative gene expression using GAPDH as
the endogenous control.

4.9. Statistical Analysis

Data are expressed as the mean± SD. Three independent experiments were performed
per assay. One-way analysis of variance (ANOVA) with Dunnett’s multiple comparison
tests was used to compare the groups. Statistical analysis was performed with GraphPad
Prism software, version 9.40 (GraphPad Software Inc., San Diego, CA, USA).
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